Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoperiod control of poplar bark storage protein accumulation.

Identifieur interne : 004C47 ( Main/Exploration ); précédent : 004C46; suivant : 004C48

Photoperiod control of poplar bark storage protein accumulation.

Auteurs : G D Coleman [États-Unis] ; T H Chen ; S G Ernst ; L. Fuchigami

Source :

RBID : pubmed:16668243

Abstract

Bark storage proteins (BSPs) accumulate in the inner bark parenchyma of many woody plants during autumn and winter. We investigated the effect of a short-day (SD) photoperiod on the accumulation of the 32-kilodalton bark storage protein of poplar (Populus deltoides Bart. ex Marsh.) under controlled environmental and natural growing conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein gel blot analysis revealed that 10 days of SD exposure (8 hours of light) resulted in a 20% increase in the relative abundance of the 32-kilodalton bark storage protein of poplar. After 17 days of SD exposure, the 32-kilodalton bark storage protein accounted for nearly one-half of the soluble bark proteins. In natural field conditions, accumulation of the 32-kilodalton bark storage protein was observed to start by August 18 (daylength 14.1 hours). Immunoprecipitation of in vitro translation products with anti-BSP serum revealed that the SD protein accumulation was correlated with changes in the pool of translatable mRNA. A survey of poplar clones from different geographic origins revealed the presence of the 32-kilodalton BSP in the dormant bark of all the clones tested. These results demonstrate that a SD photoperiod induces, whether directly or indirectly, rapid changes in woody plant gene expression, leading to the accumulation of BSP.

DOI: 10.1104/pp.96.3.686
PubMed: 16668243
PubMed Central: PMC1080831


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photoperiod control of poplar bark storage protein accumulation.</title>
<author>
<name sortKey="Coleman, G D" sort="Coleman, G D" uniqKey="Coleman G" first="G D" last="Coleman">G D Coleman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Oregon State University, Corvallis, Oregon 97331.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Horticulture, Oregon State University, Corvallis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, T H" sort="Chen, T H" uniqKey="Chen T" first="T H" last="Chen">T H Chen</name>
</author>
<author>
<name sortKey="Ernst, S G" sort="Ernst, S G" uniqKey="Ernst S" first="S G" last="Ernst">S G Ernst</name>
</author>
<author>
<name sortKey="Fuchigami, L" sort="Fuchigami, L" uniqKey="Fuchigami L" first="L" last="Fuchigami">L. Fuchigami</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1991">1991</date>
<idno type="RBID">pubmed:16668243</idno>
<idno type="pmid">16668243</idno>
<idno type="pmc">PMC1080831</idno>
<idno type="doi">10.1104/pp.96.3.686</idno>
<idno type="wicri:Area/Main/Corpus">004C52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004C52</idno>
<idno type="wicri:Area/Main/Curation">004C52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004C52</idno>
<idno type="wicri:Area/Main/Exploration">004C52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Photoperiod control of poplar bark storage protein accumulation.</title>
<author>
<name sortKey="Coleman, G D" sort="Coleman, G D" uniqKey="Coleman G" first="G D" last="Coleman">G D Coleman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Oregon State University, Corvallis, Oregon 97331.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Department of Horticulture, Oregon State University, Corvallis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chen, T H" sort="Chen, T H" uniqKey="Chen T" first="T H" last="Chen">T H Chen</name>
</author>
<author>
<name sortKey="Ernst, S G" sort="Ernst, S G" uniqKey="Ernst S" first="S G" last="Ernst">S G Ernst</name>
</author>
<author>
<name sortKey="Fuchigami, L" sort="Fuchigami, L" uniqKey="Fuchigami L" first="L" last="Fuchigami">L. Fuchigami</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="1991" type="published">1991</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bark storage proteins (BSPs) accumulate in the inner bark parenchyma of many woody plants during autumn and winter. We investigated the effect of a short-day (SD) photoperiod on the accumulation of the 32-kilodalton bark storage protein of poplar (Populus deltoides Bart. ex Marsh.) under controlled environmental and natural growing conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein gel blot analysis revealed that 10 days of SD exposure (8 hours of light) resulted in a 20% increase in the relative abundance of the 32-kilodalton bark storage protein of poplar. After 17 days of SD exposure, the 32-kilodalton bark storage protein accounted for nearly one-half of the soluble bark proteins. In natural field conditions, accumulation of the 32-kilodalton bark storage protein was observed to start by August 18 (daylength 14.1 hours). Immunoprecipitation of in vitro translation products with anti-BSP serum revealed that the SD protein accumulation was correlated with changes in the pool of translatable mRNA. A survey of poplar clones from different geographic origins revealed the presence of the 32-kilodalton BSP in the dormant bark of all the clones tested. These results demonstrate that a SD photoperiod induces, whether directly or indirectly, rapid changes in woody plant gene expression, leading to the accumulation of BSP.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">16668243</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>96</Volume>
<Issue>3</Issue>
<PubDate>
<Year>1991</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Photoperiod control of poplar bark storage protein accumulation.</ArticleTitle>
<Pagination>
<MedlinePgn>686-92</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Bark storage proteins (BSPs) accumulate in the inner bark parenchyma of many woody plants during autumn and winter. We investigated the effect of a short-day (SD) photoperiod on the accumulation of the 32-kilodalton bark storage protein of poplar (Populus deltoides Bart. ex Marsh.) under controlled environmental and natural growing conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein gel blot analysis revealed that 10 days of SD exposure (8 hours of light) resulted in a 20% increase in the relative abundance of the 32-kilodalton bark storage protein of poplar. After 17 days of SD exposure, the 32-kilodalton bark storage protein accounted for nearly one-half of the soluble bark proteins. In natural field conditions, accumulation of the 32-kilodalton bark storage protein was observed to start by August 18 (daylength 14.1 hours). Immunoprecipitation of in vitro translation products with anti-BSP serum revealed that the SD protein accumulation was correlated with changes in the pool of translatable mRNA. A survey of poplar clones from different geographic origins revealed the presence of the 32-kilodalton BSP in the dormant bark of all the clones tested. These results demonstrate that a SD photoperiod induces, whether directly or indirectly, rapid changes in woody plant gene expression, leading to the accumulation of BSP.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>G D</ForeName>
<Initials>GD</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture, Oregon State University, Corvallis, Oregon 97331.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>T H</ForeName>
<Initials>TH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ernst</LastName>
<ForeName>S G</ForeName>
<Initials>SG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fuchigami</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1991</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1991</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1991</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16668243</ArticleId>
<ArticleId IdType="pmc">PMC1080831</ArticleId>
<ArticleId IdType="doi">10.1104/pp.96.3.686</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1986 Mar;80(3):747-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Aug;90(4):1252-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Jan;89(1):309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Jan;71(1):161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Sep;73(1):125-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1974 Jun;53(6):783-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1972 Jan;49(1):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1970 Sep 25;169(3952):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17772511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Oct;13(4):347-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2491661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1989 Jul;180(1):136-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2817336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chen, T H" sort="Chen, T H" uniqKey="Chen T" first="T H" last="Chen">T H Chen</name>
<name sortKey="Ernst, S G" sort="Ernst, S G" uniqKey="Ernst S" first="S G" last="Ernst">S G Ernst</name>
<name sortKey="Fuchigami, L" sort="Fuchigami, L" uniqKey="Fuchigami L" first="L" last="Fuchigami">L. Fuchigami</name>
</noCountry>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Coleman, G D" sort="Coleman, G D" uniqKey="Coleman G" first="G D" last="Coleman">G D Coleman</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004C47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004C47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16668243
   |texte=   Photoperiod control of poplar bark storage protein accumulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16668243" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020